应用镁金属化学还原法制备多孔

澳门新葡亰app下载 1

一直以来,利用廉价的二氧化硅或硅酸盐制备硅材料都需要较高的反应温度。目前工业上采用的方法依然是高温碳热还原法,所制备的硅大都为块材,难以应用于锂离子电池负极材料。2007年至今,650℃条件下镁热还原二氧化硅是主要的制备纳米硅材料的方法,但该方法条件苛刻,容易产生副产物Mg2Si,且产率较低。铝热还原二氧化硅因产生惰性的Al2O3,需高于铝的熔点,700℃以上的高温反应才能进行。

时间:2016-09-26 10:48点击: 次来源:好文学作者:admin评论:- 小 + 大

随着锂离子电池能量密度的不断提升,传统的石墨材料已经无法满足高比能电池的设计需求,Si基材料凭借着高达4200mAh/g的容量,以及与石墨接近的嵌锂平台,成为了最有希望的下一代高容量负极材料,然而Si材料在与Li进行合金化的过程中体积膨胀可达300%以上,从而导致颗粒的粉化和破碎,以及SEI膜的破坏,从而严重影响锂离子电池的循环寿命。而SiOx材料的出现让高容量Si基负极的应用出现了转机,SiOx材料在嵌锂过程中的体积膨胀仅为118%左右,从而极大的提升了Si基材料的循环寿命,然而SiO材料独特的反应机理使得Li在首次嵌入到材料的过程中会生成没有电化学活性的Li4SiO4材料,导致SiOx材料的首次效率远远低于石墨和硅碳材料,这也成为了SiOx材料应用的一大障碍。

近日,中国科学技术大学钱逸泰课题组发展了一种在200℃熔盐体系中,采用金属Al或Mg还原二氧化硅或硅酸盐制备纳米硅材料的方法。将该材料应用于锂离子电池负极材料,展示出优异的电化学性能。该研究成果发表在《能源环境科学》上,论文的第一作者为课题组的博士生林宁。

碳素类材料因具有低且平稳的工作电压、良好的循环性能和高安全性等优点,下面是小编搜集整理的一篇探究镁金属化学还原法应用的论文范文,欢迎阅读查看。

为了解决SiOx材料首次效率偏低这一问题,人们开发了多种补Li策略,试图补偿首次充电的过程中在负极消耗的Li,而复旦大学的Yu
Zhang和Dong Yang、Angang
Dong等人通过MgO与SiOx材料中的SiO2反应生成MgSiO3的方式减少了Li在首次嵌入过程中的损失,显著提升了SiO材料的首次效率。

该工作是钱逸泰课题组熔盐体系中用金属镁还原四氯化硅(SiCl4+Mg+AlCl3)制备硅纳米材料(Angew.Chem.Int.Ed.2015,54,3822)的拓展性工作,但此次报道的工作因采用二氧化硅及各种硅酸盐为硅源,原料更加易得、价格便宜,更易放大,该工作的实用性更加显著。另外,该工作可以用价格更加便宜的金属Al为还原剂,反应中生成AlOCl,解决了长期以来铝热反应中生成惰性的Al2O3而使反应无法低温下进行的问题,促进了反应在低温下的持续进行。

摘要:以二乙烯基苯和聚硅氧烷为原料经先驱体转化法制备Si-O-C材料,利用镁金属在惰性气氛保护下高温还原制备多孔的Si/Si-O-C负极材料。利用X射线衍射、能谱分析、元素分析和场发射扫描电镜分析多孔Si/Si-O-C负极材料的组成、结构、形貌,从而研究利用镁金属化学还原法制备多孔Si/Si-O-C负极材料的机理。结果表明,镁金属在还原过程中生成MgO和Mg2SiO4等产物,经HCl洗涤后可形成多孔的Si/Si-O-C负极材料。Si/Si-O-C材料中的单质硅分布于多孔的Si-O-C相中,一定程度上可缓解Si在循环过程中产生的体积效应。利用镁金属还原Si-O-C材料制备多孔Si/Si-O-C材料是一种可行的制备方法。

中国科大低温合成硅纳米锂离子电池负极材料。实验中Yu
Zhang首先采用球磨的方法将SiO、MgO和Si材料进行研磨混合得到纳米尺度的颗粒,其中Si颗粒的加入主要是为了进一步提高材料的容量,此外作者还制备了不添加Si的材料,然后采用喷雾干燥的方式将研磨后的浆料进行造粒干燥,干燥后的颗粒在氮气气氛下进行焙烧,得到SiO-Mg2SiO4-Si或者SiO-MgSiO3-Si成分的颗粒,然后以油酸作为碳源对获得材料颗粒进行包覆处理。

该方法适用于还原各种二氧化硅粉体和含硅酸盐的原料如玻璃纤维、分子筛等,以及矿物如钾长石、硅藻土和生物矿物质等,而且产率能达到70%以上。对本低温熔盐的反应机理深入研究发现,AlCl3熔盐能够直接参与到该金属热还原过程。Mg和Al参与的还原反应分别为:4Al+3SiO2+2AlCl3=3Si+6AlOCl,2Mg+SiO2+6AlCl3=2MgAl2Cl8+2AlOCl+Si,该反应体系中的副产物AlOCl极易处理。将铝热还原硅酸盐制备的纳米硅用于锂离子电池负极材料测试表明,在3A/g的电流密度下循环1000圈,可逆比容量保持870mAh/g,且首圈库仑效率高于80%,并具有很好的倍率性能。

关键词:Si/Si-O-C负极材料;镁金属;还原;机理

下图为SiO材料的前驱体和烧结后的材料的SEM图片,从下图b能够看到喷雾干燥后的SiO混合前驱体颗粒的尺寸属于微米级别,这些颗粒是由尺寸在纳米级别的一次颗粒构成,从下图h和i能够看到后续的1100℃烧结和炭包覆处理都没有对材料的二次颗粒形貌产生大的影响,对颗粒进行元素分布分析也表明Si、Mg和O等元素在材料内部是均匀分布的。

上述研究得到了国家自然科学基金的资助。

碳素类材料因具有低且平稳的工作电压、良好的循环性能和高安全性等优点而成为目前商业化锂离子电池中常用的负极材料[1-2]。然而石墨类碳材料的理论比容量仅为372mAh·g-1,因此,为满足锂离子电池高比能量和高比功率的要求,需要探索新型的负极材料[3-5]。硅材料是已知其他材料中具有高比容量的新型负极材料,但是在锂离子嵌入后体积膨胀,结构容易坍塌,从集流体上脱落从而导致较大的不可逆容量[6-7]。针对这一问题,国内外学者开展了大量的研究,如纳米化[8-11]、薄膜化[12-16]、复合化[17-21]等。在上述的解决办法中,通过高温裂解先驱体制备含硅的硅氧碳化物Si-O-C复合负极材料是一条行之有效的方法,在这一方面已进行了大量的研究工作,发现Si-O-C复合负极材料具有较高的可逆容量和较好的循环性能[22-26]。通过改变先驱体的组成和结构,或者通过一定工艺条件可控制Si-O-C复合负极材料中生成单质硅,即制备出Si/Si-O-C负极材料[23-24]。这种材料既具有硅材料容量高的优点,又具有Si-O-C负极材料循环性能好的特点,因此是一种潜在的锂离子电池负极材料。但是,目前国内外对于Si/Si-O-C负极材料方面的研究报道较少。

根据XRD研究显示SiO-MgO-Si的混合物在加热到800℃以上时开始生成Mg2SiO4,但是当温度进一步升高到1100℃以上时Mg2SiO4会进一步转换为MgSiO3。对材料在不同的温度下烧结后的比表面积显示,随着温度的升高材料的比表面积会出现明显的下降,进行碳包覆后还会进一步降低材料的比表面,在较高温度下获得的C-SiO-MgSiO3-Si材料的比表面积仅为1.1m2/g,如此小的比表面积显著抑制了副反应的发生,促进了首次效率的提高。

1实验

澳门新葡亰app下载,普通的SiO虽然材料容量相对较高,但是首次效率较低,而在1000℃下处理得到的C-SiO-Mg2SiO4材料首次效率达到了75.8%,如果我们在材料中再加入部分的Si后我们还能够进一步的提升材料的容量,在800-1200℃下制备的C-SiO-Mg2SiO4-Si-800,C-SiO-Mg2SiO4-Si-900,C-SiO-Mg2SiO4-Si-1000,
C-SiO-MgSiO3-Si-1100和C-SiO-MgSiO3-Si-1200材料的可逆容量分别达到1825、1771、1711、1608和1299mAh/g,首次效率最高也可以达到78.3%,远远高于C-SiO和C-SiO-Si材料,这表明MgO的加入消耗了材料中的部分SiO2,因此很好的抑制了首次嵌锂过程中的副反应,减少了活性Li的消耗。SiO材料由于嵌锂过程中更小的体积膨胀,因此理论上应该具有更好的循环性能,从下图d我们能够看到经过MgO处理后的SiO材料仍然保持了非常好的循环性能,在扣式半电池中循环100次后容量保持率仍然达到60%以上。

1.1Si/Si-O-C负极材料的制备将二乙烯基苯和聚硅氧烷按照质量比1∶1混合,加入质量分数为1×106的氯铂酸后在空气中交联24h,然后在氢气气氛下以4℃/min升温速率升至800℃后保温1h,得到含有一定自由碳的Si-O-C材料。将Si-O-C材料在马弗炉中于800℃下氧化处理一定时间以除去自由碳,然后在手套箱中将过量的金属Mg和Si-O-C材料装入方形密闭的钢材料模具中,置于马弗炉中以10℃·min-1的升温速率升至900℃后保温2h,冷却至室温后,将所得材料用盐酸处理得到Si/Si-O-C负极材料。

颗粒的粉化和破碎是引起Si基材料寿命衰降的重要原因,因此作者也采用SEM手段对循环100次后的电极进行分析,从下图a和b能够看到无论是颗粒的外观和横截面都几本保持了初始的样貌,没有发现明显的结构破损,这对于提升Si基材料的循环寿命是非常有利的。

1.2Si/Si-O-C负极极片的制备按质量比80∶10∶10依次称取Si/Si-O-C材料、聚偏氟乙烯(PolyVinyliDeneFluoride,PVDF)黏结剂和导电乙炔炭黑,将PVDF黏结剂溶于氮甲基吡咯烷酮中配成溶液,将溶液、Si/Si-O-C材料和乙炔炭黑在玛瑙罐中球磨1h后得到电极浆料。然后用刮涂器将电极浆料均匀刮涂于铜箔上,在110℃真空烘箱中干燥12h制成电池极片。用打孔器将极片裁成直径20mm的圆片,精确称量,于110℃烘箱中烘干备用。

下图为SiO材料的透射电镜图片,从下图a能够看到在900℃烧结后SiO材料的内部开始出现了Si纳米晶体,随着烧结温度从900℃提高到1200℃,SiO中的Si纳米晶体的数量不断减少,晶体Si的尺寸有所增大,同时我们从C-SiO-Mg2SiO4-Si和C-SiO-MgSiO3-Si材料中能够观察到Mg2SiO4和MgSiO3产物。

1.3测试与表征采用电感耦合等离子体原子发射光谱法测试样品中硅元素的含量;采用C/S仪器测定样品中碳元素,在高温氧气气氛中灼烧样品,对产生的CO2进行定量分析;采用TC-436型N/O分析仪测定样品中的氧,将氧转化成二氧化碳,通过分析CO2的量计算原料中氧含量;采用日本HITACHIS4800场发射扫描电镜观察样品形貌,样品表面镀金,加速电压为20kV,能谱仪分析样品表面不镀金;采用德国BrukerD8AdvancedX射线衍射仪,以Cu靶Kα射线为光源进行样品X射线衍射分析,2θ为10°~70°;以Si/Si-O-C极片为工作电极,金属锂为对电极,采用LANDCT2001A型多通道充放电测试仪测试材料电化学性能,电压范围0~3V,电流密度18.6mA·g-1,测试温度25℃。

MgO提升SiO材料首次效率的原理如下图所示,通常来说SiO材料并非严格的化学计量比材料,而是由分布在SiO2中的纳米晶体Si构成,在首次嵌锂的过程中Li会与其中的SiO2反应生成没有电化学活性的Li4SiO4和Li2O等产物,因此导致首次效率较低,如果我们采用MgO首先与SiO2发生反应生成Mg2SiO4和MgSiO3产物后能够有效的抑制Li的副反应,提升SiO材料的首次效率,同时反应产物Mg2SiO4和MgSiO3具有多孔结构,因此也能够很好的吸收Si材料在嵌锂过程中的体积膨胀,从而在一定程度上还能够改善材料循环性能。

2结果与讨论

SiO材料相比于SiC材料具有更小的体积膨胀和更加优良的循环性能,是一种非常具有希望的下一代高容量负极材料,但是内在反应机理的局限,使得SiO材料的首次效率远远低于石墨和硅碳材料,成为了制约其发展的关键因素,Yu
Zhang等人通过MgO与SiO2反应生成Mg2SiO4和MgSiO3从而很好的抑制了Li在首次嵌入过程中副反应,减少了活性Li的消耗,从而大幅提升了材料的首次效率,并且该材料的制备方法具有规模化生产的潜力,目前在实验室级别已经能够完成公斤级样品的生产,因此具有广泛的应用前景。

2.1多孔Si/Si-O-C的电化学性能

是多孔Si/Si-O-C负极材料的充放电曲线。其中,测试电流密度18.6mA·g-1。由于模拟电池以锂片为对电极,放电曲线对应于锂离子和Si/Si-O-C复合负极材料合金化过程,放电容量对应锂离子合金化的容量;充电曲线对应于锂离子脱出过程,充电容量对应可逆脱出的锂离子的容量。放电容量和充电容量的差值则对应了锂离子的损失,即锂离子反应的不可逆容量。从图1可以看出,多孔Si/Si-O-C负极材料的首次和第二次放电容量分别为547.2mAh·g-1,487.4mAh·g-1,首次和第二次充电容量分别为450.7mAh·g-1,422.9mAh·g-1,首次和第二次的库伦效率分别为82.3%,86.8%,多孔Si/Si-O-C负极材料具有较高的库伦效率。根据后续组成与结构分析,Si/Si-O-C材料由Si-O-C结构、单质Si以及少量的Mg2SiO4等组成,结合相关文献[25-26],Si/Si-O-C材料的可逆容量应该与Si-O-C结构和单质Si相关,而不可逆容量可能来自Si-O-C体系中O的贡献。图2是多孔Si/Si-O-C负极材料的循环性能曲线。从图2可以看出,在首次循环中,Si/Si-O-C复合材料的嵌锂容量为547.2mAh·g-1,首次可逆容量为450.7mAh·g-1。从第三个循环开始,多孔Si/Si-O-C负极材料的可逆容量稳定在400mAh·g-1左右,其库伦效率在94%左右,材料具有较好的循环性能,后续的研究表明这与Si/Si-O-C负极材料的结构密不可分,即单质硅分布于多孔的Si-O-C相中,一定程度上可缓解Si在循环过程中产生的体积效应。

2.2多孔Si/Si-O-C负极材料的组成、结构与形貌

为研究多孔Si/Si-O-C负极材料形成机理,采用XRD,EDX和FE-SEM对材料及中间产物组成、结构、形貌进行分析。图3是Si-O-C材料、镁金属还原后Si-O-C材料和Si/Si-O-C负极材料的XRD谱图。从图3可以看出,Si-O-C材料为无定型的结构。经镁金属还原后,产物在2θ为28.4°,47.3°和56.1°处出现了分别对应于面的Si的衍射峰,在2θ为36.9°,42.9°和62.3°处出现了对应于MgO的衍射峰,在2θ为22.9°,25.5°,29.7°,32.4°,36.5°,39.7°,52.6°和56.1°处出现了对应于Mg2SiO4的衍射峰,表明材料中除生成单质Si外,还生成MgO和Mg2SiO4等。将还原产物用HCl洗涤后,其XRD谱图对应于单质Si的衍射峰依旧存在,而对应于MgO的衍射峰已经完全消失,对应于Mg2SiO4的衍射峰大部分消失或者减弱。这是因为MgO和Mg2SiO4与HCl反应发生了如式所示的反应,材料中镁金属的含量大大减少,后续EDX分析证明了这一反应。MgO+2HCl→MgCl2+H2OMg2SiO4+4HCl→2MgCl2+SiO2+2H2O为进一步表征材料的组成,采用化学分析和EDX方法对Si-O-C材料、镁金属还原后Si-O-C材料和Si/Si-O-C负极材料进行测试。表1是Si-O-C材料及其空气中氧化后产物的元素含量,图4是镁金属还原后Si-O-C材料和Si/Si-O-C负极材料的EDX图。从表1和图4可以看出,Si-O-C材料中的碳含量较高,根据前述研究[22,25],材料中碳部分以自由碳形式存在,部分以Si-O-C结构存在。将Si-O-C材料于800℃下氧化处理一定时间后,以自由碳形式存在的碳元素被氧化除掉,碳含量大大降低,氧元素和硅元素的含量增加。将氧化后的Si-O-C材料采用金属镁还原后,材料中的镁含量占29.26%,而其他三种元素的含量均有所下降。与还原产物相比,Si/Si-O-C材料中的镁元素含量大大降低,仅为3.34%,而硅元素含量则几乎是原来的2倍。图5是Si-O-C材料、镁金属还原后Si-O-C材料和Si/Si-O-C负极材料的SEM图。从图5可以看出,Si-O-C材料为致密、粒径较大块体,这是因为二乙烯基苯和聚硅氧烷经过交联后形成空间网络结构,交联产物在高温热分解过程中从高分子逐渐转变为无机物,且体积不断收缩,从而形成致密、尺寸较大块体[25-26]。与Si-O-C材料相比,Si-O-C材料在800℃下氧化处理后由镁金属还原所得产物的粒径尺寸大大减小,且致密程度有所降低,如图5所示。将还原产物利用HCl洗涤后得Si/Si-O-C材料,如图5所示,其大块颗粒的表面形成大量孔洞,其颗粒尺寸在50nm~100nm之间,这是因为还原产物MgO和Mg2SiO4与HCl反应生成可溶性MgCl2所致。

2.3多孔Si/Si-O-C负极材料生成过程

综合前述分析,多孔Si/Si-O-C负极材料的生成过程如图6所示,可分为如下3个步骤。步骤1:二乙烯基苯和聚硅氧烷在催化剂氯箔酸作用下形成交联网络结构,如图6中的②所示;这一交联网络结构在氢气气氛下逐渐完成从有机物向无机物的转变,形成粒径大小不一、含有大量自由碳的块体,如图6中的③所示。步骤3:将还原后产物经HCl溶液处理后,材料中MgO完全与HCl反应生成可溶的MgCl2,大部分Mg2SiO4与HCl反应生成可溶的MgCl2,材料中形成大量孔洞,如图6中的⑤所示。同时,材料中生成了一定数量单质硅,碳元素主要以Si-O-C结构存在,氧元素除以Si-O-C结构存在外,一小部分以Mg2SiO4形式存在。结合前述的电化学性能分析,这种多孔的Si/Si-O-C材料预计可兼具硅材料容量高和Si-O-C负极材料循环性能好的优点。

3结论

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图